
/ 

CO 
rH 

CO 
Q 

f* 

MftLABLK COPY WILL MOT PERMTT 
rOUY LEGIBLE REPItoDücmüN 

«»QUESTED n USEBS OlVD^^ 

4^ 

^ . *.     »V 

\ 

APPLICATIONS OF DYNAMIC PROQRAMMINQ TO 
SPACE OUIDANCE, SATELLITES, AND 

TRAJECTORIES 

Richard Bellman 
Mathematics Department 

Stuart Dreyfus 
Computer Sciences Department 

Robert Kalaba 
Electronics Department 
The RAND Corporation 

P-I925 

26 February  i960 
Revised 7 February 19C1 

\ 

>  r-lü'Sa 

Uu*^ )V^ 

-'v.'r , iM 

'ilCRO; i.'i::        \ 

//-■J 
'v -r- 

( 

/ & -s 

Rpprociui e() hy 

The    RAND    Corporation      •       S ci n t a     M n n     ,   n      •      CM        < .-  .  n  ,   d 

The  views expressed  in   this paper  are  not   neressunl,   those  of  the   Corporation 

miffli »^ 
fol^ 

mmi mn 



CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION, CFSTI 
INPUT SECTION 410.11 

LIMITATIONS IN REPRODUCTION QUALITY OF TECHNICAL ABSTRACT BULLETIN 
DOCUMENTS, DEFENSE DOCUMENTATION CENTER (DOC) 

□    I.        AVAILABLE ONLY FOR REFERENCE USE AT DOC FIELD SERVICES. 
COPY IS NOT AVAILABLE FOR PUBLIC SALE. 

M    2. AVAILABLE COPY WILL NOT PERMIT FULLY LEGIBLE REPRODUCTION. 
REPRODUCTION WILL BE MADE IF REQUESTED BY USERS OF DOC. 

^J A.  COPY IS AVAILABLE FOR PUBLIC SALE. 

□ B.  COPY IS NOT AVAILABLE FOR PUBLIC SALE. 

LIMITED NUMBER OF COPIES CONTAINING COLOR OTHER THAN BLACK 
AND WHITE ARE AVAILABLE UNTIL STOCK IS EXHAUSTED. REPRODUCTIONS 
WILL BE MADE IN BLACK AND WHITE ONLY. 

TSL-I2I-2 65 DATE PROCESSED.  &      l 

PROCESSOR.        j     / 



P-1923 
11 

SUMMARY 

Hie feaBlblllty of space travel and man-aade satellites 

has triggered a rash of interest in the determination of 

optimal trajectories and generally in guidance and control 

processes. These problems, for so long of purely mathematical 

and astronomical concern, have now become part of the 

engineering domain. The result is that there is a great 

demand for feasible numerical solutions of the aaaociated 

analytic problems. 

Many of these are classically of great difficulty. As a 

result of the intensive study of these questions, it is now 

well appreciated that the classical techniques of the calculus 

of variations are inoperative unless the problem is rather 

carefully selected. 

In this paper we wish to sketch the applicability of a 

new nrithematicai technique, based on the theory of dynamic 

programming, to the computational solution of trajectory 

problems. Many problems, seemingly inaccessible to the 

conventional methods of the calculus of variations, have 

already been resolved. 
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APPLICATIONS OP DYNAMIC PROORAMMINa TO SPACE QUIDANCB, 
SATELLITES,   AJO TRAJECTORIES 

Richard Bellman 
Stuart DreyTus 
Robert Kalaba 

1.    Introduction 

The feasibility of space travel and man-raade satellites 

has triggered a rash of interest in the determination of 

optimal trajectories and generally in guidance and control 

processes.    These problems, for so Ions of purely matheaatical 

and astronomical concern, have now become part of the 

engineering domain,    "ftw  result is that there  is a great 

demand for feasible numerical solutions of the associated 

analytic problems. 

Many of these are classically of great difficulty.    As a 

result of the intensive study of these questions, it is now 

well appreciated that the classical techniques of the calculus 

of variations are inoperative unless the problem is rather 

carefully selected. 

In this paper we wish to sketch the applicability of a 

new mathematical technique, based on the theory of dynamic 

programming [l] ,  [2] , to  the computational solution of 

trajectory problems.    Many problems,  seemingly inaccessible 

to the  conventional methods of the calculus of variations, 

have already been resolved,   [2,4,5,6,10,14] . 

Naturally,  there are  still a number of major difficulties 

to be overcome before  it can be asserted that we possess a 

routine approach to realistic processes.    What is important  is 
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that we hive 0 general method fur attacking guidance and 

control processes which permits us to study more complex 

physical problems using quite elementary mathematical concepts 

2. A Property of Optimal Time Trajectories 

Consider the problem of goin^ from a point p in phase 

space to a point q in phase space. Symbolically, let this 

be represented in the figure below, where r is an inter- 

mediate point. 

Let some particular trajectory be pursued, and denote by 

t(p»q)  the time required to traverse the path between tv/o 

generic points. Then, clearly 

(1)      t(pfq) - t(p,r) + t(r,q). 

Consider now the problem of determining, subject to 

various constraints on the allowable motions, the path of 

minimum time between p and  q. Then, again r.learly, if r 

is a point on an optimal trajectory the times between p and 

r and r and q must also be minimum times for the 

respective points. 
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The problem we face  Is that of starting out from    p.    If 

we do not know the optimal trajectory,   a priori,  the fore- 

going bit of infomatlon  concerning geodesies la not 

particularly enllghtenl'-.j;. 

We can,  however, make «5000 use of the  following part of 

this  Information.    Wherever    r    is  In phase  space,  anl what- 

ever the time consumed ^olns from    p    to     r-,    tae  time 

Involved In going from    r    to    q    must be  a minimum  for this 

part of the path. 

Ttilu statement  Is a parclcular case of the  "principle 

of optlmallty"   [l] . 

3»    Dynamic  Programming Approach   [^],   [4] 

It remains to express the foregoing Ideas In analytic 

form.    Let 

(1) f(p)  ■ the  time consumed  In ^olng from  an  arbitrary 

point    p    to  a flx'-d point    4,    using an 

optimal  path. 

Then,  the principle of optlmallty yields firstly the 

equation 

(2) f(p)  ^ t(p,r)  + f{r), 

for any path    prq.    To dotermlne     r,     we minimize over all 

admissible choices of    r,    obtaining the basic equation 

{}) f{p)  - mm   [t(p,r) ♦ f(r).]. 
r 
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This  e^uwilon  In  the ^83l?  f' r ^h':!  oomput ^tlon il.  so.Vut'on 

of trajectory problems. 

Similar einrIdei'atjj.or'ff   I j ij  '-.   \ v:   '■"•»»■mlrjallon of R—th 

oest jjaths,  as  is aL^ci^^^d  In  [7] . 

4.    Braohistoohrone 

As an example,  let us consider tne classical brachisto— 

ohrone problem.    Given two points,    P    and    Q,     in a vertical 

plane,  we wish to detennine  a curve connecting these  two 

points with the property that a particle sliding down this 

curve,  solely under the  influence of gravity and with no 

frlctional forceo,  will  traverse the path in minimum time. 

Take    P    to the origin and let    0    be  the fixed point 

(x0,y0),    as Indicated below. 

Osiitting the gravitational constant, uf no Import, the 

problem in the calculus of variations is that oi minimizing 

the integral 

J(y) .yo (i^.! v?
( (i) J(y) V      (i-V -'     dx 

over all curves satisfying the end conditions y(0) • 0, 

y(xo) • yn« 1° place of treating this In the usual fashion, 

a la Euler equation and so on, let ua introduce the function 

f(x,y) defined as follows: 

(2)      f(^*y) a the time required for a particle to fall 

from  (x,y) to  (xo'yo^ alon8 an optimal 

path. 
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Then a partlcularizatlon of (3.5) yields the functional 

equation 

(3) 
",,2 1/2 1 

(x,y) - mln I1 ^ )  ^ + f(x + A,y + y'a) + o(^) 
y I   L       J J 

where    y'    represents the slope of a proposed path at    x,     and 

A    is an infinitesimal. 

Passing to the  limit, we can obtain a partial differential 

equation for    f    which turns out to be equivalent to the Euler 

equation.    But this is not what we wish to do1.    Instead we sub- 

divide the    x    interval Into    N    parts,  where    N^ • x    and 

regard    f (ic^,y)  ■ ^(y)    as a function of    y    for    0 < y < yQ« 

Then  (3) becomes 

(1 V' )    k + r^Cy + y'M CO My)  - min 
k y' 

k+l 

for    k » 0,1,2,...,N - 1,    with    My)  - 0.    The detenninat^on 

of    My)     i8 a computational process which we refer to a 

digital computer.    The minimization over initial directions is 
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carried out not by means of calculus,  but by means of a direct 

search process over allowable slopes. 

One consequence of this is that constraints on    y1 

simplify the computational process, as  they should since  we 

have fewer policies  to examine.    Further details of the 

computational aspects,  which are seldom trivip.l,  will be 

found in [ip] . 

3«    Minimum Bnergy 

Suppose that we wish to go from    p    to    q    in phase  space, 

reverting to the general formulation of tp, at minimum cost 

in resources,  say minimum fuel.    Regarding    t(p,r)    not  as a 

time,  but as a coat for getting from    f    t0    r»    ^ see  that 

the general equation of   (3 0)  is still  valid. 

Oenerally,  we cam treat any variational problem in  this 

fashion, providing it has the Markoviar» property that we have 

been employing.    To U3e  the foregoing method we need merely 

know that the optimal continuation from any point in phase 

space depends only upon that point,  and not upon the past 

history of the process. 

Thua, not only can general variational problems involving 

standard functionals of the form 

x 

x# 

(1) J(y)  -/   1 «(x^y'Jdx, 
w0 

be handled but also many classes of implicit variational 

problems [5] , [9] which cannot readily be treated by 

conventional methods. 
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6. Stochastic and Adaptive Control Procesaes 

Finally, the same general techniques CJLT be used to treat 

the more complex stochastic and adaptive control processes 

[8,9,11,12] . 

7« Discussion 

The  trajectory and feedback contrul problems sketched 

In earlier sections represent merely one application, albeit a 

particuUrly important one, of the functional equation tech- 

nique of dynamic programming to the solution of space 

problems. Problems which lead to multistage decision pro— 

ceases also occur In the areas of design of multistage rockets 

[l1*] , communication [3] , [15] , propagation [15] , equipment 

reliability [l£] ,  equipment replacement [l/]* D-C » an^ so on' 

The desire for the design of mere nearly optimal systems 

coupled with the inevitable advances in computer technology 

should bring dynamic programming methodology into a position 

of increasing importance in the future in the resolution of 

•pace optimization problems. 
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